TS Intermediate Mathematics 1st Year Model Paper 2024 
SECTION-A Very Short Answer Type Questions. 
(i) Answer ALL questions. 
(ii) Each question carries TWO marks. 
Q1: Show that the points (-5, 1), (5, 5), and (10, 7) are collinear. Answer: 
Since the slopes are equal, the points are collinear.
Q2: Find the distance between the parallel lines: 
5 x − 3 y − 4 = 0 , 10 x − 6 y − 9 = 0. 5x – 3y – 4 = 0, \quad 10x – 6y – 9 = 0. 
5 x − 3 y − 4 = 0 , 10 x − 6 y − 9 = 0. 
Answer: 
Distance = ∣ C 2 − C 1 ∣ A 2 + B 2 . \text{Distance} = \frac{|C_2 – C_1|}{\sqrt{A^2 + B^2}}. 
Distance = A 2 + B 2  C 2  − C 1   . 
For the given lines, the distance is:
Distance = 1 2 34 . \text{Distance} = \frac{1}{2\sqrt{34}}. 
Distance =   . 
Q3: Find the fourth vertex of the parallelogram whose consecutive vertices are ( 2 , 4 , − 1 ) (2, 4, -1) 
  
 
 
( 2 , 4 , − 1 ) ( 3 , 6 , − 1 ) (3, 6, -1) 
 
 
 
( 3 , 6 , − 1 ) ( 4 , 5 , 1 ) (4, 5, 1) 
 
 
 
( 4 , 5 , 1 ) Answer: 
( 5 , 7 , 1 ) (5, 7, 1) 
( 5 , 7 , 1 ) 
Q4: Find the angle between the planes: 
x + 2 y + 1 = 0 , 5 x + 3 y − 8 = 0. x + 2y + 1 = 0, \quad 5x + 3y – 8 = 0. 
x + 2 y + 1 = 0 , 5 x + 3 y − 8 = 0. 
Answer: 
cos  θ = ∣ n 1 ⃗ ⋅ n 2 ⃗ ∣ ∣ n 1 ⃗ ∣ ∣ n 2 ⃗ ∣ . \cos \theta = \frac{|\vec{n_1} \cdot \vec{n_2}|}{|\vec{n_1}| |\vec{n_2}|}. 
cos θ = n 1   n 2   n 1   ⋅ n 2    . 
Substituting the normal vectors of the planes:
θ = cos  − 1 ( 11 170 ) . \theta = \cos^{-1} \left( \frac{11}{\sqrt{170}} \right). 
θ = cos−1  (   ) . 
Q5: Compute lim  x → 0 π x − 1 1 + x − 1 \lim_{x \to 0} \frac{\pi^x – 1}{\sqrt{1 + x} – 1} 
  
 
 
limx → 0  + x  − 1π x − 1 Answer: 
lim  x → 0 π x − 1 1 + x − 1 = 2 ln  π . \lim_{x \to 0} \frac{\pi^x – 1}{\sqrt{1 + x} – 1} = 2 \ln \pi. 
x → 0lim  + x  − π x −  = 2 ln π . 
Q6: Compute lim  x → π 2 cos  ( x ) x − π 2 \lim_{x \to \frac{\pi}{2}} \frac{\cos(x)}{x – \frac{\pi}{2}} 
  
 
 
limx → 2 π    x − 2 π  c o s ( x )  Answer:  This is an indeterminate form 
0 0 \frac{0}{0} 
0 0  
Differentiate the numerator and denominator:
d d x ( cos  ( x ) ) = − sin  ( x ) , d d x ( x − π 2 ) = 1. \frac{d}{dx} (\cos(x)) = -\sin(x), \quad \frac{d}{dx} \left( x – \frac{\pi}{2} \right) = 1. 
d x d  ( cos ( x )) = − sin ( x ) , d x d  ( x − π  ) = 1. 
Now, evaluate the limit:
lim  x → π 2 − sin  ( x ) 1 = − sin  ( π 2 ) = − 1. \lim_{x \to \frac{\pi}{2}} \frac{-\sin(x)}{1} = -\sin\left( \frac{\pi}{2} \right) = -1. 
x → 2 π  lim  sin ( x )  = − sin ( π  ) = − 1. 
Thus, the limit is 
− 1 \boxed{-1} 
−1  
Q7: If f ( x ) = 2 x 2 + 3 x − 5 f(x) = 2x^2 + 3x – 5 
  
 
 
f ( x ) = 2 x 2 + 3 x − 5 f ′ ( 0 ) + 3 f ′ ( − 1 ) = 0 f'(0) + 3f'(-1) = 0 
 
 
 
f ′ ( 0 ) + 3 f ′ ( − 1 ) = 0 Answer:  First, find 
f ′ ( x ) f'(x) 
f ′ ( x ) 
f ′ ( x ) = 4 x + 3. f'(x) = 4x + 3. 
f ′ ( x ) = 4 x + 3. 
Now, evaluate at 
x = 0 x = 0 
x = 0 
x = − 1 x = -1 
x = − 1 
f ′ ( 0 ) = 3 , f ′ ( − 1 ) = − 1. f'(0) = 3, \quad f'(-1) = -1. 
f ′ ( 0 ) = 3 , f ′ ( − 1 ) = − 1. 
Thus,
f ′ ( 0 ) + 3 f ′ ( − 1 ) = 3 + 3 ( − 1 ) = 3 − 3 = 0. f'(0) + 3f'(-1) = 3 + 3(-1) = 3 – 3 = 0. 
f ′ ( 0 ) + 3 f ′ ( − 1 ) = 3 + 3 ( − 1 ) = 3 − 3 = 0. 
So, the equation holds true.
Q8: Find the derivative of sin  − 1 ( 2 x 1 + x 2 ) \sin^{-1}\left( \frac{2x}{1 + x^2} \right) 
  
 
 
sin−1  ( 1+ x 2  2x   ) Answer:  Let 
u = 2 x 1 + x 2 u = \frac{2x}{1 + x^2} 
u = 1+ x 2  2x   
The derivative of 
sin  − 1 ( u ) \sin^{-1}(u) 
sin−1  ( u ) 
d d x sin  − 1 ( u ) = 1 1 − u 2 ⋅ d u d x . \frac{d}{dx} \sin^{-1}(u) = \frac{1}{\sqrt{1 – u^2}} \cdot \frac{du}{dx}. 
d x d  sin−1  ( u ) = − u 2   ⋅ d x d u  . 
Now, differentiate 
u u 
u 
d u d x = 2 − 2 x 2 ( 1 + x 2 ) 2 . \frac{du}{dx} = \frac{2 – 2x^2}{(1 + x^2)^2}. 
d x d u  = ( 1+ x 2 )2  − x 2  . 
Thus, the derivative is:
d y d x = 2 − 2 x 2 ( 1 + x 2 ) 2 1 − ( 2 x 1 + x 2 ) 2 . \frac{dy}{dx} = \frac{2 – 2x^2}{(1 + x^2)^2 \sqrt{1 – \left( \frac{2x}{1 + x^2} \right)^2}}. 
d x d y  = ( 1+ x 2 )2  − ( 1+ x 2  2x   ) 2  − x 2  . 
Q9: Find the approximate value of 65 \sqrt{65} 
  
 
 
65  Answer:  Since 
64 = 8 \sqrt{64} = 8 
64  = 8 
65 ≈ 8 + 65 − 64 2 × 8 = 8 + 1 16 = 8.0625. \sqrt{65} \approx 8 + \frac{65 – 64}{2 \times 8} = 8 + \frac{1}{16} = 8.0625. 
65  ≈ 8 + × −  = 8 +  = 8.0625. 
So, the approximate value of 
65 \sqrt{65} 
65  
8.0625 \boxed{8.0625} 
8.0625  
Q10: Verify Rolle’s Theorem for the function y = f ( x ) = x 2 + 4 y = f(x) = x^2 + 4 
  
 
 
y = f ( x ) = x 2 + 4 [ − 3 , 3 ] [-3, 3] 
 
 
 
[ − 3 , 3 ] Answer: 
Now, differentiate:
f ′ ( x ) = 2 x . f'(x) = 2x. 
f ′ ( x ) = 2 x . 
Set 
f ′ ( x ) = 0 f'(x) = 0 
f ′ ( x ) = 0 
2 x = 0 ⇒ x = 0. 2x = 0 \quad \Rightarrow \quad x = 0. 
2 x = 0 ⇒ x = 0. 
Since 
0 0 
0 
[ − 3 , 3 ] [-3, 3] 
[ − 3 , 3 ] 
x = 0 x = 0 
x = 0 
f ′ ( x ) = 0 f'(x) = 0 
f ′ ( x ) = 0 
SECTION-B II. Short answer type questions: 
(i) Attempt ANY FIVE questions. 
(ii) Each question carries FOUR marks. 
Q11: If the distance from P P 
  
 
 
P ( 2 , 3 ) (2, 3) 
 
 
 
( 2 , 3 ) ( 2 , − 3 ) (2, -3) 
 
 
 
( 2 , − 3 ) P P 
 
 
 
P Answer:  Let the coordinates of 
P P 
P 
( x , y ) (x, y) 
( x , y ) 
Distance from 
P P 
P 
( 2 , 3 ) (2, 3) 
( 2 , 3 ) 
( x − 2 ) 2 + ( y − 3 ) 2 \sqrt{(x – 2)^2 + (y – 3)^2} 
( x − )2  + ( y − )2   
P P 
P 
( 2 , − 3 ) (2, -3) 
( 2 , − 3 ) 
( x − 2 ) 2 + ( y + 3 ) 2 \sqrt{(x – 2)^2 + (y + 3)^2} 
( x − )2  + ( y + )2   
According to the given ratio,
Distance from  P  to  ( 2 , 3 ) Distance from  P  to  ( 2 , − 3 ) = 2 3 . \frac{\text{Distance from } P \text{ to } (2, 3)}{\text{Distance from } P \text{ to } (2, -3)} = \frac{2}{3}. 
Distance from  P  to  ( 2, ) Distance from  P  to  ( 2, )  =  . 
Squaring both sides:
( x − 2 ) 2 + ( y − 3 ) 2 ( x − 2 ) 2 + ( y + 3 ) 2 = 4 9 . \frac{(x – 2)^2 + (y – 3)^2}{(x – 2)^2 + (y + 3)^2} = \frac{4}{9}. 
( x − )2  + ( y + )2  ( x − )2  + ( y − )2   =  . 
After simplifying, the equation of the locus of 
P P 
P 
9 ( ( x − 2 ) 2 + ( y − 3 ) 2 ) = 4 ( ( x − 2 ) 2 + ( y + 3 ) 2 ) . 9\left( (x – 2)^2 + (y – 3)^2 \right) = 4\left( (x – 2)^2 + (y + 3)^2 \right). 
9 ( ( x − 2 )2  + ( y − 3 )2  ) = 4 ( ( x − 2 )2  + ( y + 3 )2  ) . 
This simplifies to the equation of the locus in standard form.
Q12: When the axes are rotated through an angle α \alpha 
  
 
 
α x cos  α + y sin  α = p x \cos \alpha + y \sin \alpha = p 
 
 
 
x cos α + y sin α = p Answer:  Let the new coordinates after rotation be 
x ′ x’ 
x ′ 
y ′ y’ 
y ′ 
x = x ′ cos  α − y ′ sin  α x = x’ \cos \alpha – y’ \sin \alpha 
x = x ′ cos α − y ′ sin α 
y = x ′ sin  α + y ′ cos  α y = x’ \sin \alpha + y’ \cos \alpha 
y = x ′ sin α + y ′ cos α 
Substitute these into the given equation:
( x ′ cos  α − y ′ sin  α ) cos  α + ( x ′ sin  α + y ′ cos  α ) sin  α = p . (x’ \cos \alpha – y’ \sin \alpha) \cos \alpha + (x’ \sin \alpha + y’ \cos \alpha) \sin \alpha = p. 
( x ′ cos α − y ′ sin α ) cos α + ( x ′ sin α + y ′ cos α ) sin α = p . 
Simplifying:
x ′ ( cos  2 α + sin  2 α ) + y ′ ( cos  α sin  α − sin  α cos  α ) = p . x’ (\cos^2 \alpha + \sin^2 \alpha) + y’ (\cos \alpha \sin \alpha – \sin \alpha \cos \alpha) = p. 
x ′ ( cos2  α + sin2  α ) + y ′ ( cos α sin α − sin α cos α ) = p . 
x ′ = p ( since  cos  2 α + sin  2 α = 1 ) , x’ = p \quad (\text{since } \cos^2 \alpha + \sin^2 \alpha = 1), 
x ′ = p ( since  cos2  α + sin2  α = 1 ) , 
Thus, the transformed equation is:
x ′ = p . x’ = p. 
x ′ = p . 
Q13: Find the value of K K 
  
 
 
K 4 x − y + 7 = 0 4x – y + 7 = 0 
 
 
 
4 x − y + 7 = 0 K x − 5 y − 9 = 0 Kx – 5y – 9 = 0 
 
 
 
K x − 5 y − 9 = 0 Answer:  The angle between two lines is given by the formula:
tan  θ = ∣ m 1 − m 2 1 + m 1 m 2 ∣ . \tan \theta = \left| \frac{m_1 – m_2}{1 + m_1 m_2} \right|. 
tan θ =  + m 1  m 2  m 1  − m 2    . 
Where 
m 1 m_1 
m 1  
m 2 m_2 
m 2  
For the first line 
4 x − y + 7 = 0 4x – y + 7 = 0 
4 x − y + 7 = 0 
m 1 m_1 
m 1  
m 1 = 4 1 = 4. m_1 = \frac{4}{1} = 4. 
m 1  =  = 4. 
For the second line 
K x − 5 y − 9 = 0 Kx – 5y – 9 = 0 
K x − 5 y − 9 = 0 
m 2 m_2 
m 2  
m 2 = K 5 . m_2 = \frac{K}{5}. 
m 2  = K  . 
Given that the angle between the lines is 45°, so 
tan  4 5 ∘ = 1 \tan 45^\circ = 1 
tan 4 5∘  = 1 
Thus,
∣ 4 − K 5 1 + 4 × K 5 ∣ = 1. \left| \frac{4 – \frac{K}{5}}{1 + 4 \times \frac{K}{5}} \right| = 1. 
 + × 5 K  − 5 K    = 1. 
Simplifying the equation:
4 − K 5 1 + 4 K 5 = 1. \frac{4 – \frac{K}{5}}{1 + \frac{4K}{5}} = 1. 
+ 5 4K   − 5 K   = 1. 
Multiplying both sides by 
5 ( 5 + 4 K ) 5(5 + 4K) 
5 ( 5 + 4 K ) 
K K 
K 
K = 10. K = 10. 
K = 10. 
Q14: Compute lim  x → 0 sin  x x 2 \lim_{x \to 0} \frac{\sin x}{x^2} 
  
 
 
limx → 0  x 2 s i n x  Answer:  As 
x → 0 x \to 0 
x → 0 
sin  x \sin x 
sin x 
x 2 x^2 
x 2 
0 0 \frac{0}{0} 
0 0  
To solve this, apply L’Hopital’s Rule:
lim  x → 0 sin  x x 2 = lim  x → 0 cos  x 2 x . \lim_{x \to 0} \frac{\sin x}{x^2} = \lim_{x \to 0} \frac{\cos x}{2x}. 
x → 0lim  x 2 sin x  = x → 0lim  x cos x  . 
Evaluating the limit:
lim  x → 0 cos  x 2 x = 1 0 , \lim_{x \to 0} \frac{\cos x}{2x} = \frac{1}{0}, 
x → 0lim  x cos x  =  , 
which tends to infinity.
Thus, the limit is 
∞ \boxed{\infty} 
∞  
Q15: Find the derivative of the function cot  x \cot x 
  
 
 
cot x Answer:  Using the first principle of differentiation:
f ′ ( x ) = lim  h → 0 f ( x + h ) − f ( x ) h . f'(x) = \lim_{h \to 0} \frac{f(x + h) – f(x)}{h}. 
f ′ ( x ) = h → 0lim  h f ( x + h ) − f ( x )  . 
Let 
f ( x ) = cot  x f(x) = \cot x 
f ( x ) = cot x 
f ′ ( x ) = lim  h → 0 cot  ( x + h ) − cot  ( x ) h . f'(x) = \lim_{h \to 0} \frac{\cot(x + h) – \cot(x)}{h}. 
f ′ ( x ) = h → 0lim  h cot ( x + h ) − cot ( x )  . 
Using the identity for the difference of cotangents:
cot  ( x + h ) − cot  ( x ) = sin  h sin  ( x + h ) sin  x . \cot(x + h) – \cot(x) = \frac{\sin h}{\sin(x + h)\sin x}. 
cot ( x + h ) − cot ( x ) = sin ( x + h ) sin x sin h  . 
Simplifying, the derivative of 
cot  x \cot x 
cot x 
f ′ ( x ) = − csc  2 x . f'(x) = -\csc^2 x. 
f ′ ( x ) = − csc2  x . 
Q16: Find the lengths of sub-tangent and sub-normal at a point on the curve y = b sin  ( π x a ) y = b \sin\left( \frac{\pi x}{a} \right) 
  
 
 
y = b sin ( a π x  ) Answer:  For the curve 
y = b sin  ( π x a ) y = b \sin\left( \frac{\pi x}{a} \right) 
y = b sin ( a π x  ) 
T = y y ′ = b sin  ( π x a ) b ⋅ π a cos  ( π x a ) = a sin  ( π x a ) π cos  ( π x a ) . T = \frac{y}{y’} = \frac{b \sin\left( \frac{\pi x}{a} \right)}{b \cdot \frac{\pi}{a} \cos\left( \frac{\pi x}{a} \right)} = \frac{a \sin\left( \frac{\pi x}{a} \right)}{\pi \cos\left( \frac{\pi x}{a} \right)}. 
T = y ′ y  = b ⋅ a π  cos ( a π x  ) b sin ( a π x  )  = π cos ( a π x  ) a sin ( a π x  )  . 
The length of the sub-normal is given by:
N = y ′ y ′ ′ = b ⋅ π a cos  ( π x a ) − b ⋅ ( π a ) 2 sin  ( π x a ) = − a cos  ( π x a ) π sin  ( π x a ) . N = \frac{y’}{y”} = \frac{b \cdot \frac{\pi}{a} \cos\left( \frac{\pi x}{a} \right)}{-b \cdot \left( \frac{\pi}{a} \right)^2 \sin\left( \frac{\pi x}{a} \right)} = -\frac{a \cos\left( \frac{\pi x}{a} \right)}{\pi \sin\left( \frac{\pi x}{a} \right)}. 
N = y ′′ y ′  = b ⋅ ( a π  ) 2 sin ( a π x  ) b ⋅ a π  cos ( a π x  )  = − π sin ( a π x  ) a cos ( a π x  )  . 
Q17: The volume of a cube is increasing at the rate of 8 cm³/sec. How fast is the surface area increasing when the length of an edge is 12 cm? Answer:  Let 
V = s 3 V = s^3 
V = s 3 
A = 6 s 2 A = 6s^2 
A = 6 s 2 
s s 
s 
Given that 
d V d t = 8 \frac{dV}{dt} = 8 
d t d V  = 8 
d A d t \frac{dA}{dt} 
d t d A  
s = 12 s = 12 
s = 12 
First, differentiate the volume with respect to time:
d V d t = 3 s 2 d s d t . \frac{dV}{dt} = 3s^2 \frac{ds}{dt}. 
d t d V  = 3 s 2 d t d s  . 
Substitute 
d V d t = 8 \frac{dV}{dt} = 8 
d t d V  = 8 
8 = 3 × 1 2 2 × d s d t . 8 = 3 \times 12^2 \times \frac{ds}{dt}. 
8 = 3 × 1 22  × d t d s  . 
Solve for 
d s d t \frac{ds}{dt} 
d t d s  
8 = 3 × 144 × d s d t , d s d t = 8 432 = 1 54 . 8 = 3 \times 144 \times \frac{ds}{dt}, \quad \frac{ds}{dt} = \frac{8}{432} = \frac{1}{54}. 
8 = 3 × 144 × d t d s  , d t d s  =  =  . 
Now, differentiate the surface area:
d A d t = 12 s d s d t . \frac{dA}{dt} = 12s \frac{ds}{dt}. 
d t d A  = 12 s d t d s  . 
Substitute 
s = 12 s = 12 
s = 12 
d s d t = 1 54 \frac{ds}{dt} = \frac{1}{54} 
d t d s  = 54 1  
d A d t = 12 × 12 × 1 54 = 144 54 = 24 9 = 2.67  cm 2 / sec . \frac{dA}{dt} = 12 \times 12 \times \frac{1}{54} = \frac{144}{54} = \frac{24}{9} = 2.67 \text{ cm}^2/\text{sec}. 
d t d A  = 12 × 12 ×  =  =  = 2.67  cm 2 / sec . 
Thus, the surface area is increasing at a rate of 
2.67 \boxed{2.67} 
2.67  
SECTION-C 
III. Long answer type questions : 
(i) Attempt ANY FIVE questions. (ii) Each question carries SEVEN marks. 
18. Find the equation of the straight line parallel to the line 3x + 4y = 7 and passing through the point of intersection of the lines x – 2y – 3 = 0 and x + 3y – 6 = 0. 
Solution: 
First, find the point of intersection of the lines x − 2 y − 3 = 0 x – 2y – 3 = 0 
x − 2 y − 3 = 0 x + 3 y − 6 = 0 x + 3y – 6 = 0 
x + 3 y − 6 = 0  
 
x − 2 y = 3 (Equation 1) x – 2y = 3 \quad \text{(Equation 1)} 
x − 2 y = 3 (Equation 1) x + 3 y = 6 (Equation 2) x + 3y = 6 \quad \text{(Equation 2)} 
x + 3 y = 6 (Equation 2) 
From Equation 1, x = 2 y + 3 x = 2y + 3 
x = 2 y + 3 
( 2 y + 3 ) + 3 y = 6 (2y + 3) + 3y = 6 
( 2 y + 3 ) + 3 y = 6 2 y + 3 + 3 y = 6 ⇒ 5 y = 3 ⇒ y = 3 5 2y + 3 + 3y = 6 \quad \Rightarrow \quad 5y = 3 \quad \Rightarrow \quad y = \frac{3}{5} 
2 y + 3 + 3 y = 6 ⇒ 5 y = 3 ⇒ y =  
Substitute y = 3 5 y = \frac{3}{5} 
y = 5 3  x = 2 y + 3 x = 2y + 3 
x = 2 y + 3 
x = 2 × 3 5 + 3 = 6 5 + 15 5 = 21 5 x = 2 \times \frac{3}{5} + 3 = \frac{6}{5} + \frac{15}{5} = \frac{21}{5} 
x = 2 ×  + 3 =  +  =  
Thus, the point of intersection is ( 21 5 , 3 5 ) \left(\frac{21}{5}, \frac{3}{5}\right) 
( 5 21  , 5 3  ) 
Now, the given line is 3 x + 4 y = 7 3x + 4y = 7 
3 x + 4 y = 7  
 
slope = − 3 4 \text{slope} = -\frac{3}{4} 
slope = −  
Since the required line is parallel, it will have the same slope. The equation of the line with slope − 3 4 -\frac{3}{4} 
− 4 3  ( 21 5 , 3 5 ) \left(\frac{21}{5}, \frac{3}{5}\right) 
( 5 21  , 5 3  ) 
y − 3 5 = − 3 4 ( x − 21 5 ) y – \frac{3}{5} = -\frac{3}{4}\left(x – \frac{21}{5}\right) 
y −  = −  ( x −  ) 
Multiply through by 20 to eliminate fractions:
20 ( y − 3 5 ) = − 15 ( x − 21 5 ) 20\left(y – \frac{3}{5}\right) = -15\left(x – \frac{21}{5}\right) 
20 ( y −  ) = − 15 ( x −  ) 20 y − 12 = − 15 x + 63 20y – 12 = -15x + 63 
20 y − 12 = − 15 x + 63 15 x + 20 y = 75 15x + 20y = 75 
15 x + 20 y = 75 
Thus, the equation of the required line is:
15 x + 20 y = 75 15x + 20y = 75 
15 x + 20 y = 75 
19. Show that the lines represented by ( l x + m y ) 2 − 3 ( m x − l y ) 2 = 0 (lx + my)^2 – 3(mx – ly)^2 = 0 
( l x + m y )2  − 3 ( m x − l y )2  = 0 l x + m y + n = 0 lx + my + n = 0 
l x + m y + n = 0 3 ( l 2 + m 2 ) n 2 \sqrt{3} \frac{(l^2 + m^2)}{n^2} 
3  n 2 ( l 2 + m 2 )   
Solution: 
Expand the first equation ( l x + m y ) 2 − 3 ( m x − l y ) 2 = 0 (lx + my)^2 – 3(mx – ly)^2 = 0 
( l x + m y )2  − 3 ( m x − l y )2  = 0  
 
( l x + m y ) 2 = 3 ( m x − l y ) 2 (lx + my)^2 = 3(mx – ly)^2 
( l x + m y )2  = 3 ( m x − l y )2  l 2 x 2 + 2 l m x y + m 2 y 2 = 3 ( m 2 x 2 − 2 l m x y + l 2 y 2 ) l^2x^2 + 2lmxy + m^2y^2 = 3(m^2x^2 – 2lmxy + l^2y^2) 
l 2 x 2 + 2 l m x y + m 2 y 2 = 3 ( m 2 x 2 − 2 l m x y + l 2 y 2 ) l 2 x 2 + 2 l m x y + m 2 y 2 = 3 m 2 x 2 − 6 l m x y + 3 l 2 y 2 l^2x^2 + 2lmxy + m^2y^2 = 3m^2x^2 – 6lmxy + 3l^2y^2 
l 2 x 2 + 2 l m x y + m 2 y 2 = 3 m 2 x 2 − 6 l m x y + 3 l 2 y 2 l 2 x 2 + 2 l m x y + m 2 y 2 − 3 m 2 x 2 + 6 l m x y − 3 l 2 y 2 = 0 l^2x^2 + 2lmxy + m^2y^2 – 3m^2x^2 + 6lmxy – 3l^2y^2 = 0 
l 2 x 2 + 2 l m x y + m 2 y 2 − 3 m 2 x 2 + 6 l m x y − 3 l 2 y 2 = 0 ( l 2 − 3 m 2 ) x 2 + ( m 2 − 3 l 2 ) y 2 + 8 l m x y = 0 (l^2 – 3m^2)x^2 + (m^2 – 3l^2)y^2 + 8lmxy = 0 
( l 2 − 3 m 2 ) x 2 + ( m 2 − 3 l 2 ) y 2 + 8 l m x y = 0 
The general form of an equation representing two lines is A x 2 + B x y + C y 2 = 0 A x^2 + B xy + C y^2 = 0 
A x 2 + B x y + C y 2 = 0  
 
Area = 3 4 ( l 2 + m 2 ) n 2 \text{Area} = \frac{\sqrt{3}}{4} \frac{(l^2 + m^2)}{n^2} 
Area =   n 2 ( l 2 + m 2 )  
Hence, we conclude that the lines form an equilateral triangle with area 3 ( l 2 + m 2 ) n 2 \sqrt{3} \frac{(l^2 + m^2)}{n^2} 
3  n 2 ( l 2 + m 2 )  
20. Find the condition for the chord l x + m y = 1 lx + my = 1 
l x + m y = 1 x 2 + y 2 = a 2 x^2 + y^2 = a^2 
x 2 + y 2 = a 2  
Solution: 
The equation of the circle is x 2 + y 2 = a 2 x^2 + y^2 = a^2 
x 2 + y 2 = a 2 
 
The equation of the chord is l x + m y = 1 lx + my = 1 
l x + m y = 1 
 
For the chord to subtend a right angle at the origin, the perpendicular distance from the center of the circle (origin) to the chord must be equal to the radius of the circle.
 
 
The perpendicular distance d d 
d l x + m y = 1 lx + my = 1 
l x + m y = 1 
d = ∣ l ⋅ 0 + m ⋅ 0 − 1 ∣ l 2 + m 2 = 1 l 2 + m 2 d = \frac{|l \cdot 0 + m \cdot 0 – 1|}{\sqrt{l^2 + m^2}} = \frac{1}{\sqrt{l^2 + m^2}} 
d = l 2 + m 2  l ⋅ + m ⋅ −  = l 2 + m 2   
For the chord to subtend a right angle at the origin, we set this distance equal to the radius a a 
a 
1 l 2 + m 2 = a \frac{1}{\sqrt{l^2 + m^2}} = a 
l 2 + m 2   = a 
Squaring both sides:
1 l 2 + m 2 = a 2 \frac{1}{l^2 + m^2} = a^2 
l 2 + m 2  = a 2 
Thus, the condition is:
l 2 + m 2 = 1 a 2 l^2 + m^2 = \frac{1}{a^2} 
l 2 + m 2 = a 2  
21. Find the angle between the lines whose direction cosines are given by the equations 3 l + m + 5 n = 0 3l + m + 5n = 0 
3 l + m + 5 n = 0 6 m n − 2 n l + 5 l m = 0 6mn – 2nl + 5lm = 0 
6 mn − 2 n l + 5 l m = 0  
Solution: 
The direction cosines of the lines are l , m , n l, m, n 
l , m , n θ \theta 
θ ( l 1 , m 1 , n 1 ) (l_1, m_1, n_1) 
( l 1  , m 1  , n 1  ) ( l 2 , m 2 , n 2 ) (l_2, m_2, n_2) 
( l 2  , m 2  , n 2  )  
 
cos  θ = l 1 l 2 + m 1 m 2 + n 1 n 2 l 1 2 + m 1 2 + n 1 2 l 2 2 + m 2 2 + n 2 2 \cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}} 
cos θ = l 1 2  + m 1 2  + n 1 2   l 2 2  + m 2 2  + n 2 2   l 1  l 2  + m 1  m 2  + n 1  n 2   
Using the given equations 3 l + m + 5 n = 0 3l + m + 5n = 0 
3 l + m + 5 n = 0 6 m n − 2 n l + 5 l m = 0 6mn – 2nl + 5lm = 0 
6 mn − 2 n l + 5 l m = 0 l l 
l m m 
m n n 
n 
 
Calculate the cosine of the angle between the two lines using the formula provided.
 
 
22. If y = x a 2 + x 2 + a 2 log  ( x + a 2 + x 2 ) y = x\sqrt{a^2 + x^2} + a^2\log(x + \sqrt{a^2 + x^2}) 
y = x a 2 + x 2  + a 2 log  ( x + a 2 + x 2  ) d y d x = 2 a 2 + x 2 \frac{dy}{dx} = 2\sqrt{a^2 + x^2} 
d x d y  = 2 a 2 + x 2   
Solution: 
Differentiate y = x a 2 + x 2 + a 2 log  ( x + a 2 + x 2 ) y = x\sqrt{a^2 + x^2} + a^2\log(x + \sqrt{a^2 + x^2}) 
y = x a 2 + x 2  + a 2 log  ( x + a 2 + x 2  ) 
The first term x a 2 + x 2 x\sqrt{a^2 + x^2} 
x a 2 + x 2   
 
d d x ( x a 2 + x 2 ) = a 2 + x 2 + x ⋅ 1 2 a 2 + x 2 ⋅ 2 x = a 2 + x 2 + x 2 a 2 + x 2 \frac{d}{dx}\left(x\sqrt{a^2 + x^2}\right) = \sqrt{a^2 + x^2} + x \cdot \frac{1}{2\sqrt{a^2 + x^2}} \cdot 2x = \sqrt{a^2 + x^2} + \frac{x^2}{\sqrt{a^2 + x^2}} 
d x d  ( x a 2 + x 2  ) = a 2 + x 2  + x ⋅ a 2 + x 2   ⋅ 2 x = a 2 + x 2  + a 2 + x 2  x 2  
The second term a 2 log  ( x + a 2 + x 2 ) a^2\log(x + \sqrt{a^2 + x^2}) 
a 2 log  ( x + a 2 + x 2  )  
 
d d x ( a 2 log  ( x + a 2 + x 2 ) ) = a 2 x + a 2 + x 2 ⋅ ( 1 + x a 2 + x 2 ) \frac{d}{dx}\left(a^2\log(x + \sqrt{a^2 + x^2})\right) = \frac{a^2}{x + \sqrt{a^2 + x^2}} \cdot \left(1 + \frac{x}{\sqrt{a^2 + x^2}}\right) 
d x d  ( a 2 log  ( x + a 2 + x 2  ) ) = x + a 2 + x 2  a 2  ⋅ ( 1 + a 2 + x 2  x  ) 
Combining the terms, you get:
d y d x = 2 a 2 + x 2 \frac{dy}{dx} = 2\sqrt{a^2 + x^2} 
d x d y  = 2 a 2 + x 2  
23. If the tangent at any point on the curve x 2 / 3 + y 2 / 3 = a 2 / 3 x^{2/3} + y^{2/3} = a^{2/3} 
x 2/3 + y 2/3 = a 2/3  
Solution: 
Find the equation of the tangent to the curve x 2 / 3 + y 2 / 3 = a 2 / 3 x^{2/3} + y^{2/3} = a^{2/3} 
x 2/3 + y 2/3 = a 2/3 
 
The tangent intersects the coordinate axes, and you can use the intercept form to determine the coordinates of points A and B.
 
Show that the length of the line segment AB remains constant for all points on the curve.
 
 
24. From a rectangular sheet of dimensions 30 cm x 80 cm, four equal squares of side ‘x’ cm are removed at the corners and the sides are then turned up so as to form an open rectangular box. Find the value of x, so that the volume of the box is the greatest. 
Solution: 
The volume V V 
V  
 
V = x ( 30 − 2 x ) ( 80 − 2 x ) V = x(30 – 2x)(80 – 2x) 
V = x ( 30 − 2 x ) ( 80 − 2 x ) 
To find the value of x x 
x V V 
V x x 
x d V d x = 0 \frac{dV}{dx} = 0 
d x d V  = 0 
 
Solve for x x 
x